Uniform Regularity and Vanishing Viscosity Limit for the Free Surface Navier-stokes Equations

نویسنده

  • NADER MASMOUDI
چکیده

We study the inviscid limit of the free boundary Navier-Stokes equations. We prove the existence of solutions on a uniform time interval by using a suitable functional framework based on Sobolev conormal spaces. This allows us to use a strong compactness argument to justify the inviscid limit. Our approach does not rely on the justification of asymptotic expansions. In particular, we get a new existence result for the Euler equations with free surface from the one for Navier-Stokes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Regularity for the Navier-stokes Equation with Navier Boundary Condition

We prove that there exists an interval of time which is uniform in the vanishing viscosity limit and for which the Navier-Stokes equation with Navier boundary condition has a strong solution. This solution is uniformly bounded in a conormal Sobolev space and has only one normal derivative bounded in L∞. This allows to get the vanishing viscosity limit to the incompressible Euler system from a s...

متن کامل

Uniform Regularity and Vanishing Viscosity Limit for the Compressible Navier-Stokes with General Navier-Slip Boundary Conditions in Three-Dimensional Domains

In this paper, we investigate the uniform regularity for the isentropic compressible Navier-Stokes system with general Navier-slip boundary conditions (1.6) and the inviscid limit to the compressible Euler system. It is shown that there exists a unique strong solution of the compressible Navier-Stokes equations with general Navier-slip boundary conditions in an interval of time which is uniform...

متن کامل

Vanishing Viscosity Limit of the Navier-Stokes Equations to the Euler Equations for Compressible Fluid Flow

We establish the vanishing viscosity limit of the Navier-Stokes equations to the isentropic Euler equations for one-dimensional compressible fluid flow. For the NavierStokes equations, there exist no natural invariant regions for the equations with the real physical viscosity term so that the uniform sup-norm of solutions with respect to the physical viscosity coefficient may not be directly co...

متن کامل

A Survey of the Compressible Navier-stokes Equations

This paper presents mathematical properties of solutions to the Navier-Stokes equations for compressible fluids. We first review existence results for the Cauchy problem, and describe some regularity properties of solutions in the presence of possibly vanishing densities. Finally, we address the problem of the low Mach number limit leading to incompressible models.

متن کامل

Vanishing Viscosity Limit to Rarefaction Waves for the Navier-Stokes Equations of One-Dimensional Compressible Heat-Conducting Fluids

We prove the solution of the Navier-Stokes equations for one-dimensional compressible heat-conducting fluids with centered rarefaction data of small strength exists globally in time, and moreover, as the viscosity and heat-conductivity coefficients tend to zero, the global solution converges to the centered rarefaction wave solution of the corresponding Euler equations uniformly away from the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012